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Abstract: 

Blending of powders and granular materials is a critical unit operation in many industries, yet the 
ability to predict blending effectiveness lags well behind our ability to create new and novel 
blenders.  As a result of this, production plants must rely on vendor blending tests conducted on 
small scale model blenders to determine if their specific material will work in the proposed 
blender design.  Once these blending tests are conducted, engineers must then use past 
experience and conservative design practices to scale-up to full scale units at process flow rates. 

The difficulty in predicting blending efficiencies arises from the fact that blending performance 
depends on basic material properties, blender geometry, blender flow rates, and blender 
operation parameters.  These effects are convoluted during blending operation.  Successful scale-
up would require understanding how to separate the influence of these four effects.   If this could 
be accomplished, blender performance could be determined by measuring simple material 
properties, predicting blender velocity profiles, and computing blender efficiencies from 
predicted velocity patterns.  This method would allow separation of factors affecting blender 
performance and provide a means of reliable scale-up using simple material properties and 
specified blenders geometries. 

This paper presents a methodology of predicting blender performance in simple in-bin blenders 
using easily measured material properties.  It discusses blender optimization and determines the 
influence of gas pressure gradients on blender flow and operation.  The specific blender analyzed 
is the cone-in-cone blender and the analysis suggests that blender performance depends on wall 
friction parameters for conditions where input concentration fluctuations occupy much of the 
blender volume.  However, blending action appears to be independent of friction angle for 
conditions where there are many concentration fluctuations within a blender volume.  The 
analysis also shows that gas pressure gradients can lead to stagnant region formation.  

Key Words:  Mass flow, Mixing, Residence Time Distributions, Powders, Solid Mechanics 
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Introduction 

Acceptable blending of powder and granular materials requires three things. First, all material 
within the blender must be in motion during blender operation.  Second, a distribution of 
material residence times must exist within the blender.  Third, the blending shear and velocity 
profiles must result in mixing on a scale smaller than the size of the final product sample.    

It is obvious from these three criteria that the specific motion in a given blender configuration 
determines the extent of blending caused by the process equipment.  In fact, if flow profiles in 
any given blender were known, then they could be used to compute residence time distributions 
for the given blender configuration.  These residence time distribution functions could then be 
used to evaluate blender performance.   

Blending of powder material can be accomplished by imposing a velocity profile across a given 
piece of process equipment resulting in a distribution of residence times within the blender.  For 
example, in well designed mechanical blenders all of the material in the blender is in motion 
during operation.  In these blenders the velocity flow field is complex, resulting in particle flow 
paths that cross multiple times before exiting the blender.  Since all particle flow paths do not 
travel the same distance before exiting the blender and individual particle velocities are different, 
the complex flow paths result in a residence time distribution function.  Ideally, adjacent 
particles in a blender would have very different flow paths causing significant inter-particle 
mixing and produce wide residence time distribution functions.  However, real blenders always 
shear material, often producing local zones which possess different trajectories and result in 
mixing down to the scale of local shear zones produced during the mixing processes.  These 
local shear zones are caused by flow around paddles or screw flights and, when combined with 
the dynamic material trajectories, produce the overall blending in any given blender.  In fact, the 
velocities in any given blender are due to shear or dynamic effects that move groups of particles 
around.  Thus, to understand blending as a unit operation, one must be able to estimate the 
velocity profiles in both dynamic and shear flows.  Every blender will have a combination of 
these velocity types.  The main premise of this work is that material properties can be used along 
with specific blender geometries to predict blending velocity profiles.  These velocity profiles 
can then be used to compute the expected blender residence time distribution functions and 
finally estimate the blender performance.  This approach de-convolutes the effects of material 
properties, blender geometry, and blender operation parameters, making scale-up possible.   

This approach is presented for the simple case of in-bin blenders such as the cone-in-cone.  The 
dynamic material trajectories in this style blender occur only during blender filling as material 
free falls into the blender and distributes on the resulting pile.  Most of the blending occurring in 
this type of blender results from shear velocity profiles caused by the specific blender geometry.  
The cone-in-cone blender will be used as an example to show how to de-convolute the effects of 
blender performance, material properties, blender geometry, and blender operation parameters 
and provide a methodology for blender scale-up.  This blender will also be analyzed relative to 
the three criteria outlined above. 

Cone-in-cone blenders 

A cone-in-cone blender consists of a bin with a hopper that comprises two independent conical 
hopper sections as shown in Figure 1.  One conical hopper section is inserted inside the other to 
form an interior conical hopper and an annular flow channel.  Material flows through both the 
inner conical hopper and the annular region during blending operation.  The vertical section 
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above the cone-in-cone is designed large enough to provide a mixing zone but is usually limited 
to a height equivalent to twice the diameter.  Distribution chutes at the top of the blender spread 
the input flow stream across the blender cross section thus helping reduce possible segregation 
during blender filling.  There is a conical hopper below the cone-in-cone section.  The velocity 
profile across the cone-in-cone section combines with the velocity profile in the lower cone to 
yield a combined velocity profile responsible for axial blending in the in-bin blender.  Material 
exiting this blender usually flows through some form of feeder to down stream process 
equipment.  The cone-in-cone blender mixes well in the axial direction but provides only a small 
mixing capability in the radial direction.  Hence, the feeder below the cone-in-cone provides 
radial mixing that is lacking from this style blender.  
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Figure 1.   Schematic of typical cone-in-cone geometry 

 
Mass Flow in Cone-in-cone blenders 

The cone-in-cone hopper is a type of mass flow hopper.  The interior cone and the lower cone 
are designed so the hopper slope angle is compatible with standard mass flow criteria.  Simply 
stated, mass flow is a condition that produces significant material movement in the entire process 
equipment as material passes through or discharges from it (BMHB [1]).  There are no stagnant 
regions in a mass flow bin.  However, depending on the hopper shape and wall friction angle, a 
significant velocity profile can exist in a mass flow bin creating a residence time distribution.  
This property has been used successfully to create mass flow blenders (Ebert, et al [2], Johanson 
[3]).   

The radial stress theory has been successfully used to compute the velocity in conical hoppers as 
well as to predict the mass flow limit.  This theory will be extended to cone-in-cone hoppers as 
outlined below.  These theories predict a relationship between the conical hopper half angle and 
the friction angle that is compatible with radial stress conditions.  Figure 2 shows the calculated 
relationship between conical hopper angle and wall friction angle based on the radial stress 
theory (Jenike and Johanson [4], Nedderman [5]).   It was shown that wall friction and hopper 
wall conditions that exceed the limiting line given in Figure 2 resulted in no flow along the walls 
or funnel flow.   
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Figure 2.    Typical mass flow funnel flow limit for effective internal friction angle of 50 

degrees 

The radial stress theory asserts that stress states within process equipment are compatible with 
radial stress fields and will produce mass flow in that process equipment.  Non-radial stress 
states produce funnel flow behavior (stagnant region formation).  In addition, the more frictional 
the wall surface, the steeper the velocity profile across the bin.  Figure 3 shows the computed 
velocity profiles from the radial stress theory for a conical hopper with a hopper slope angle of 
20 degrees measured from the vertical.   This figure shows the increase in the steepness of the 
velocity profile as the wall friction angle increases.  This radial stress theory will be discussed in 
more detail below. 
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Figure 3.    Conical velocity profiles in a 20 degree hopper with various friction angle along 

the bin wall 
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Computed radial velocities are well established for conical hoppers and could be extended to 
cone-in-cone geometries using the framework of the radial stress theory.  Radial stress theory 
can be applied to cone-in-cone geometry since the two hoppers have a common apex.  The 
overall objective of this work is to understand the relationship between blender velocities and the 
operational parameters.  Therefore, the cone-in-cone radial theory will include external forces 
such as gas pressure gradients so the relationship between process flow and velocity profiles can 
be determined.  The starting point for radial stress derivation is the equation of motion with the 
acceleration terms neglected.  As a result, the radial stress theory applies to slow moving 
conditions in cone-in-cone geometries.   

 
Pg ∇−=⋅∇ γτ            (1) 

 
Spherical coordinates will simplify the numerical representation of equation 1 for the case of 
conical hoppers.  The radial direction originates from the cone-in-cone apex resulting in 
equations 2 and 3 describing the relationship between the solid stress, bulk density, and gas 
pressure gradient.   
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The Haar-Von Karman hypothesis can be used to eliminate some of the variables in equations 2 
and 3.  This hypothesis states that the normal stress (σφ) is either a major or minor principal 
stress.  Normal hoop stress (σφ) equals major principal stress if the material flows through 
converging geometries, and equals the minor principal stress when flowing through diverging 
geometries.  In either case, the shear stresses (τrφ) and (τθφ) acting on the φ−plane equal zero.  
This simplifies equations 2 and 3 to yield equations 4 and 5. 
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It is important to point out that there are four unknown stresses in the two equations above.  
Additional relationships between stress components are required to solve these two equations.  
The required relationship comes from the effective yield locus of the bulk solid (see Figure 4) 
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Figure 4.    Limiting stress state definitions 

Mohr circles are a graphical representation of the stress state acting on a bulk material.  The 
effective yield locus is a line that is the envelope of the particular states of stress that represents a 
condition of continual deformation without volume change and is called the critical state of 
stress.  This condition exists during steady flow in converging geometries.  The relationship 
between stress tensor components can be derived using the definition of the effective yield locus 
and Mohr circle stress state geometry.  This derived relationship provides the required closure 
equation for equations 4 and 5.  The unknown stresses in these two equations can be represented 
as functions of the mean stress (σ) and the direction angle between major principal stress and the 
spherical coordinate system (ω).  These relationships are given in equations 6 through 11.   

 
))2cos()sin(1( ωδσσ ⋅⋅−⋅=r   (6) 

 
))2cos()sin(1( ωδσσ θ ⋅⋅+⋅=   (7) 

 
)2sin()sin( ωδστ θ ⋅⋅⋅−=r    (8) 

 
))sin(1(1 δσσ +⋅=     (9) 

 
))sin(1(3 δσσ −⋅=     (10) 

 
))sin(1( δσσ φ +⋅=     (11) 

 



���������	�
���
�
��
��������������������� � ���
��
����������������������	 ����!�"������#��!$��"�%�&!��

 
p 7 

The last equation required for the radial stress model comes from work done by Sokolovski [6]. 
He states that the mean solid stress near the apex of a wedge shaped section of a bulk material is 
proportional to the radial distance from the wedge apex to the point of interest.  This yields 
equation 12 for the mean stress.   
 

)(θγσ srg ⋅⋅⋅=     (12) 
 
Substitution of equations 6 through 12 into equations 4 and 5 results in two equations in terms of 
the mean solids stress (σ) and the principal stress direction angle (ω).  These derived equations 
assume that the effective angle of internal friction is constant and that the pressure gradients are 
only functions of radial position from the hopper apex.     
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Equations 13 and 14 can be solved simultaneously to yield equations 17 and 18.   
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With the exception of the terms containing A1 and A2, these two equation are identical to the 
radial stress used by Jenike [7] [8], Johanson [4], and Nedderman [5].  The terms A1 and A2 
include the gas pressure effects and can be used to estimate the influence of fluid pressures of the 
behavior of the bulk.  It should be pointed out that the methodology used in this paper assumes 
the use of the traditional Mohr-Coulomb yield criteria.  One could also apply a Drucker-Prager 
yield criteria as outlined in Jenike’s work [9].  This will be a topic of further study.  

Up to this point we have not made any distinction between the conical geometry and the annular 
geometry in the cone-in-cone.  Consequently, equations 17 and 18 will apply to both geometries.  
However, the boundary condition for each geometry will be different.  In the case of the conical 
geometry, the value of ω is known at the centerline of the hopper and at the hopper wall.  In the 
case of the annular region, the value of ω is known at both the inner and outer hopper walls.   
The stress at the centerline of an axial symmetric conical hopper must be aligned with the 
principal stress direction.  This implies that the angle between the coordinate axis and the 
direction of major principal stress (ω) equals zero.  

 
00 == θω at   (19) 

 
The other required boundary condition comes from the state of stress at the hopper wall.  The 
stress condition at the wall must satisfy both the critical state of stress and the traditional 
columbic friction condition.  Figure 5 shows a Mohr circle compatible with the critical state of 
stress.  The line in Figure 5 indicates the columbic friction condition.  Two intersection points 
satisfy these conditions.  If the hopper converges, then the intersection at point A, representing 
the passive state of stress, applies.  If the hopper diverges, then the active stress at intersection 
point B applies.    
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Figure 5.  Two possible wall friction states for converging and diverging conical hopper 

geometries 

The cone-in-cone is a converging geometry so the passive stress state applies.  The concepts of 
passive and active stress states are borrowed from the discipline of soil mechanics.  They arise 
from retaining wall terminology.  In order to activate the stress state behind a retaining wall, the 
wall is pulled away from the material causing the stresses acting on the wall surface to be lower 
than the stresses acting vertically.  Conversely, a passive state of stress results in wall stresses 
that are larger than the vertical stresses.  The situation describing flow in a hopper is similar to a 
retaining wall, except the material moves and the wall is stationary.  If the material flow 
direction causes material to pull away from the wall, then the active stress state applies, causing 
the wall stresses to be lower than the vertical stresses.  This phenomenon occurs in diverging 
hoppers.  Converging hoppers are then subject to passive stress states where the wall stresses are 
greater than the vertical stresses.  The stress state represented by point A implies that the 
direction between the coordinate axis and the major principal stress is given by equation 20. 
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In non-aerated conditions, the wall friction angle is exclusively known and equations 17 and 18 
can be integrated directly to produce a relationship between the principal stress direction angle 
(ω) and the hopper slope angle.  However, the additional body forces caused by the gas pressure 
gradients near the hopper wall change the effective wall friction angle (i.e. the angle of slide 
against the wall).  Gas pressure gradient is a body force term and is a vector quantity that can be 
added vectorally with the gravitational vector terms to produce a new vector component that acts 
at a direction (β) from the coordinate system (see Figure 6.).   This implies that the total effective 
body force term acts in a direction other than the direction of gravitational pull.  In effect the 
addition of gas pressure gradients causes the effective friction angle to act perpendicular to the β-
direction in order to maintain equilibrium of forces.   Consequently, the net effect of the gas 
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pressure gradient is to rotate the effective coordinate system relative to the gravitational 
direction.  The new effective wall friction angle (φwe) is given by equation 21. 
 

βφφ += wwe    (21) 
 

 

θ∂

∂ Pr

P

∂

∂

zg⋅γ

Body 
Force

ββββ

r
-1

r

θ
 

 
Figure. 6. Force balance at wall surface including gas pressure gradient terms 

Angle (β) is a function of the pressure gradient in the radial and θ-directions.  This leads to 
equation 22, describing the new effective wall friction angle in terms of the gas pressure gradient 
terms. 
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Equations 19 and 20 provide the required boundary conditions for standard conical hoppers.  
Equation 20 also applies to the outer wall in the annular region of the cone-in-cone geometry 
yielding the following equation for the outer wall boundary condition.   
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However, the inner wall in the annular region of the cone-in-cone requires different boundary 
conditions.  Figure 7 shows the expected contours of major principal stress direction within the 
annular region.  This figure implies that the direction of major principal stress is in the negative 
ω-direction along the inner cone wall.  This suggests that the boundary condition along the outer 
surface of the inner cone wall is given by Equation 24: 
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Figure 7.   Direction of principal stress in annular region 

Equations 17 and 18 can be integrated using boundary conditions given in equations 23 and 24 to 
produce radial stress solutions for annular geometries.  Figure 8 shows some of the solutions for 
the case of a 10 degree inner cone.  Careful examination of the solution space of these 
differential equations reveals no radial stress solutions to the right of the annular solution dotted 
line shown in Figure 8.  This is similar to the result for the solution of radial stress field in 
standard conical hoppers.  These standard conical hopper solutions also showed no radial 
solution to the right of the solid line shown in Figure 8.  Experimental evidence suggests that this 
line is the limiting line between mass flow and funnel flow behavior for typical conical hoppers.  
It stands to reason that the limiting line for the annular geometry would also be the limit between 
mass flow and funnel flow behavior in the annular geometry.  This figure reveals how a cone-in-
cone hopper can be used to extend the mass flow limit to flatter hoppers for a given wall friction 
condition.  Consider, for example, a material that has a friction angle of 33 degrees.  The conical 
mass flow limit line shown in Figure 8 indicates that conical hoppers must be steeper than 10 
degrees measured from the vertical to produce flow along hoppers walls.  However, the solution 
for the same wall friction angle in an annular flow channel flow where the inner cone is 10 
degrees is given by the dotted line in Figure 8.  This figure implies that mass flow is possible if 



���������	�
���
�
��
��������������������� � ���
��
����������������������	 ����!�"������#��!$��"�%�&!��

 
p 12 

the external hopper is about 22 degrees measured from the vertical.  The net result is that this 
combination of hoppers shifts the limiting radial stress line towards flatter hoppers.  Thus, the 
cone-in-cone geometry extends the mass flow limit to flatter outer cone angles.  If material will 
flow in mass flow in a 10 degree conical hopper then the cone-in-cone hopper can be almost 22 
degrees and still produce mass flow.  
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Figure 8.  Mass flow limit for cone-in-cone hopper with inner cone of 10 degrees 

This same analysis can be performed for various combinations of inner and outer conical 
hoppers.  Figure 9 shows the predicted mass flow limit lines for several inner conical hopper 
configurations.  Generally, if frictional characteristics of the inner and outer cone are the same 
and the inner hopper is designed for mass flow with a hopper angle of �c, then the outer hopper 
angle can be designed with a slope angle given by the balanced friction angle limit line found in 
Figure 9.   

Conversely, if an existing conical hopper has a frictional condition that puts it in the funnel flow 
region, then Figure 9 could be used to determine the size and shape of the inner cone that would 
be required to cause flow along the walls.  For example, consider the case of a 35o conical 
hopper with a wall friction angle of 21o.  This cone would be in the funnel flow regime as 
indicated by the plus sign in Figure 9.  However, if an inner cone with a 10o slope was placed 
within the existing funnel flow hopper, then mass flow could be achieved. 
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Figure 9.    Balanced friction mass flow limiting line for cone-in-cone geometry (internal 

friction angle δ=δ=δ=δ=50 deg) 

The analysis above suggests that cone-in-cone geometries could be designed to produce mass 
flow during operation provided hopper walls are steep enough.  Thus, designing the hopper angle 
in accordance with these limits will satisfy the first blender criteria that states that all of the mass 
within the blender must be in motion during blender operation.  The above analysis determines 
the relationship between wall friction angle and the steepness of both the inner and outer hopper 
walls that will produce mass flow.  Walls that are too frictional or too flat will result in flow 
patterns where at least some of the material in the blender is stagnant.   

However, imposing just the concept of mass flow is not sufficient to guarantee significant 
blending.  Traditional radial stress theory applied to standard conical hopers indicates that nearly 
uniform flow profiles can exist in hoppers where materials have low friction angles.  It stands to 
reason that applying radial velocity patterns to the cone-in-cone geometries will also produce 
uniform flow patterns for low friction angle or steep hoppers.  These nearly uniform velocity 
profiles will result in poor mixing.  A method of computing velocity profiles in cone-in-cone 
geometries will be presented below. 

It is important to note this mass flow criterion was determined solely from knowledge of basic 
material properties.  Consequently, this analysis allows us to relate the general flow pattern to 
material properties.  This is the first step in de-convoluting material properties and blender 
operation.  The next step involves computing the expected velocity profile in the blender from 
just knowledge of material properties and blender geometry. 
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Velocity profiles in Cone-in-cone blenders 

There are two ways velocity profiles can be affected in cone-in-cone hoppers.  Since the cone-in-
cone actually consists of two independent hopper sections, it is possible that these two hoppers 
sections have different average flow rates through them based on the areas of the top and bottom 
outlets.  In fact, the cone-in-cone hopper dimensions can be specified to create a desired flow 
ratio between the inner cone and the annular region.  Equation 25 shows how the inner cone 
outlet diameter can be chosen to specify the fraction (R) of global flow rate directed through the 
inner cone.  This fraction is based on the ratio of flow areas at the top and bottom diameters of 
the cones.  From a practical point of view, a typical cone-in-cone can achieve a maximum 
velocity ratio (R) between inner and outer cones of about five to one.  Equation 25 can be used to 
estimate the inner cone diameter (dB) required for a given velocity ratio (Rvel=Vinner/Vouter).    
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In addition to this global velocity pattern, the velocity across the hopper section will vary based 
on the wall friction conditions.  This is a direct result of applying the radial stress and velocity 
theory to a cone-in-cone geometry.  The cone-in-cone geometry with a common apex suggests 
that radial velocity profiles could also exist in the annular hopper region as well as the inner cone 
region.  The radial velocity pattern is a function of the direction of principal stress in both the 
inner cone and annular hopper section.  None of the assumptions regarding radial velocities are 
violated in annular conical flow so the standard radial velocity equations (Jenike and Johanson 
[4], Nedderman [5]) can be used to predict the velocities in annular conical geometries.  The 
radial velocity in the inner cone can be approximated by equation 26 while the radial velocity in 
the annular region can be approximated by equation 27. 
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These equations yield an approximation to the velocity profile across both the inner and annular 
hopper sections that depend on wall friction angles, effective internal friction angles, and radial 
gas pressure gradients.   

These velocities can be combined with the inner cone velocities to give the complete radial 
velocity pattern in a cone-in-cone hopper.  Scaling factors can be applied to the inner and outer 
velocity profiles to adjust the flow ratio in the inner and outer geometries.  Figure 10 shows two 
expected velocity patterns in a cone-in-cone hopper with a two-to-one velocity flow ratio (Rvel) 
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from the inner to outer cones.  These velocities are a function of the wall friction angle.  Figure 
10a predicts very flat velocity profiles with low wall friction angle materials.  Figure 10b shows 
steeper velocity profiles with more frictional wall materials.   

The flow profiles in Figure 10 assume that material exits the blender at the bottom of the cone-
in-cone section.   However, in good blenders there exists a conical hopper below the cone-in-
cone section.  The velocity profile in this conical hopper extension influences the overall blender 
velocity profile.  The radial stress theory can be used to compute the expected velocity profile in 
the lower cone.  This profile can be normalized to produce an average velocity equal to one.  
This normalized velocity profile can then be used as a multiplier on the cone-in-cone velocity to 
produce a new overall velocity profile that includes the effect of the lower conical hopper.   
Figure 11 shows how the velocity profiles above would be influenced by the conical section 
below the cone-in-cone.   

 

  
10a – Wall friction angle of 10 deg 10b – Wall friction angle of 30 deg 

Figure 10.    Velocity profiles in typical cone-in-cone geometries at two different friction 
conditions 

 

  
11a – Wall friction angle of 30 degrees; with 
a 3:1 flow rate ratio between inner and outer 
cones and no lower conical hopper placed 
below the blender. 

11b – Wall friction angle of 30 degrees; with 
3:1 flow rate ratio between inner and outer 
cones and lower conical hopper.   

Figure 11.    Velocity profiles showing the effect of the lower conical hopper on velocity 
profiles in cone-in-cone blenders 
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Residence time distribution functions in cone-in-cone blenders 

Understanding blending in a cone-in-cone will require using these computed velocity profiles to 
determine the residence time distribution function (E(t)) for the blender and then using this 
residence time distribution function to compute the expected variance reduction factor in the 
blender.  The standard way of evaluating continuous powder blender performance is to place a 
sudden impulse of markers in the blender, then operate the blender while maintaining the level in 
the blender and observe the discharge profile of markers leaving the blender.  This exiting 
marker profile, when normalized to produce a total integrated concentration of one, is the 
residence time distribution function.  The problem with this experimental analysis is that 
changing the material, adjusting the rate, or slight modifications to blender geometry requires a 
whole new blender test to develop the new residence time distribution function.  Thus scale-up of 
blender performance is nearly impossible for most blenders.   However, if the velocity profile is 
known, then it is a moderately simple task to numerically place a unit impulse in the cone-in-
cone blender and integrate the flow field to compute the distribution of markers exiting the 
blender as a function of time.   

In the cone-in-cone geometry, calculated velocity profiles do not cross each other and, 
consequently, can be integrated along flow stream lines to determine the time that a particle 
placed at the top of the blender will exit the blender outlet.  Computing the exit times for a layer 
of particles placed at the top of the blender gives rise to a method of computing the residence 
time distribution function of the blender.  The procedure for computing residence time in the 
blender from material properties is as follows.   

The time required for one complete blender volume to pass through the blender is divided into 
small equal increments. This incremental time unit is then used to compute the thickness of a 
mathematical marker layer placed at the top of the blender.  The thickness of this layer represents 
the average distance traveled for material at the top of the bin in one time increment.  The cross 
sectional area at the top of the blender is divided into rings of equal area, creating regions of 
constant volume.  These regions will be subject to radial flow streamline velocities.  The position 
of any of the regions over time can be computed by multiplying the radial velocity by the 
incremental time and vectorally adding this value to the last marker volume position.  The 
position of these individual marker volumes can be continually monitored to determine the time 
when they exit the blender.  The number of volume elements exiting the blender divided by the 
total number of initial volume elements in the blender is an approximation of the blender 
residence time distribution.  Perfect plug flow will result in all the marker volumes exiting the 
blender at the same time (after one blender volume discharge).  Any deviation from this will 
produce a distribution in residence times and result in blending.  Figure 12 shows a calculated 
residence time distribution function for a cone-in-cone hopper with a 10 degree inner cone and a 
20 degree outer cone and a uniform velocity profile imposed below the cone-in-cone hopper.  
The relative flow rate variation between the inner and outer cone was two-to-one and the wall 
friction angle was 30 degrees measured from the horizontal.  This figure also contains the 
velocity profile computed from this blender geometry.  The initial marker layer comes from the 
center of the blender and exits the blender after only 0.5 blender volumes have passed through 
the system.  The large peak is from the sudden change in the slope of the blender profile and 
exits the blender after about 1.25 bender volumes have passed through the system.   It is 
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important to point out that this figure represents the residence time distribution in terms of the 
total amount of material passing through the blender instead of the elapsed time in the blender 
itself.  In other words, the number of blender volumes (BV) passing through the system would be 
equal to the residence time (tresidence) multiplied by the average mass flow rate (Qsavg) of the 
material in the blender and divided by the blender mass capacity (Capblender).   
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Figure 12.    Residence time distribution function for cone-in-cone geometry shown in Figure 

10b with wall friction angle of 30 degrees 
 
Average residence time Tavg can be used to characterize blenders or other process equipment.  
However, two blenders may have the same average residence time but cause very different 
blending behaviors.  In fact, it is possible to construct a bin where the material flows in nearly 
perfect uniform velocity mass flow.  Residence time for this case would correspond to the time 
required for one blender volume to pass through the system.  The distribution function in perfect 
mass flow would be a sharp concentration spike centered around one blender volume.  This type 
of blender profile would not lead to blending and a uniform velocity mass flow bin would be a 
poor choice for a blender.  A blender could also be constructed with an average residence time of 
one but distribute material over several bin volumes and result in good blending.  Therefore, the 
width of the residence time distribution is more important in quantifying blending operation.  It 
is the range of residence times in any blender that causes blending.   

The residence time distribution function could be considered a blender finger print.  With this 
distribution function, engineers can compute the expected concentration profiles for any input 
condition.  Normally this residence distribution function is a measured quantity.  The strength of 
this paper is the ability to compute the distribution function solely from measured material 
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properties for a given blender geometry.  Once the residence time distribution function is known, 
any output concentration can be predicted by combining the input concentration function Cin(t) 
and the residence time distribution function (E(t)) using the convolution integral given in 
Equation 29.  

dttEtCC inout ⋅⋅−= 

∞

)()()(
0

ττ    (29) 

 
Engineers can now compute the expected output concentration from a given cone-in-cone 
blender for any prescribed input concentration based only on a knowledge of basic material 
properties.  For example, compare the input and output concentration profiles shown in Figure 
13.  The continuous blender operation smoothes the input concentration profile and produces a 
concentration profile with the same frequency but smaller variation exiting the blender.  This 
result suggests that cone-in-cone blenders satisfy the second blending criteria which states that 
there must be significant residence time distributions within the blender for mixing to occur. 
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(b) 

Figure 13.    Input (a) and output (b) concentrations for blender with computed residence time 
distribution given in Figure 12 and input concentration period of 1.0 
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Figure 13 shows the expected reduction in output concentration fluctuation for the case where 
the period of concentration fluctuation extends over one complete bin volume.  The number of 
fluctuations in a blender volume affects the degree of smoothing observed in the output 
concentration.  This effect is shown in Figure 14 where the period of the input concentration 
function is less than one blender volume.  This shorter period results in smaller output 
concentration fluctuations.  One could compute the variance of the output concentration and 
divide that by the variance of the input concentration to provide a measure of blending 
effectiveness.  This variance reduction factor can provide a means of ranking blender 
performance.  Lower values of the variance reduction factor will result in better blending.   
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(b) 

Figure 14.    Input (a) and output (b) concentrations for blender with computed residence time 
distribution given in Figure 10 and input concentration period of 0.33  
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The example in Figure 13 above would result in a reduction factor of 0.086 while the example in 
Figure 14 would result in a reduction factor of 0.036, indicating better blending.  It is important 
to point out that, in general, the greater the frequency or the shorter the period of the input 
concentration, the smaller the output concentration fluctuation.   Since the above method allows 
calculation of the blender residence time distribution as a function of material properties and 
specific blender design constraints, it can be used for a parametric study of blend efficiencies 
based on flow properties and design constraints without having to measure blender distribution 
functions experimentally using expensive scale blender models. 

For example, consider the case of a cone-in-cone blender with a 20 degree outer cone and a 10 
degree inner cone.  Consider also the effect of changing the input fluctuation frequency in two 
nearly identical blenders where the difference in these two blenders is the wall friction angle.  
Figure 15 shows the effect of blender variance reduction factors (VR) for two blenders where the 
number of input concentration fluctuation in one blender volume was varied.  The number on the 
x-axis of this graph is the number of fluctuation periods of a sinusoidal varying concentration 
that enters the blender during the time it would take for one blender volume to pass through the 
system.  The resulting variance reduction factor depends strongly on the number of fluctuations 
per blender volume.  This figure clearly shows that, the larger the number of fluctuations per 
blender volume, the lower the variance reduction factor will be.   

The results of this parametric study also suggest that the wall friction angle does not make a 
significant difference in blender effectiveness if the number of concentration input cycles is 
greater than about seven.  However, there is a significant difference in blender efficiency in this 
blender when the number of input concentration cycles per blender volume is small.  Thus, cone-
in-cone blender operation becomes sensitive to material properties (i.e. wall friction) when 
attempting to blend fluctuations that occur over large blender volumes.   
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Figure 15. Variance reduction factors for identical blenders with a difference in wall 
friction angle 
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The influence of small changes in blender design can also be studied without conducting a 
blender test.  Consider comparing two blenders where the wall friction angle is 30 degrees.  
Assume that the blender is designed with a 10 degree inner cone and a 20 degree outer cone.  
However, assume one blender discharges directly from the cone-in-cone section to the 
downstream process.  Also assume that the inner cone diameter, for this blender, is designed with 
a two-to-one flow rate ratio.  The other blender has a conical hopper below it that is imposing an 
additional blender velocity on the material and the inner cone diameter is increased to generate a 
three to one flow rate ratio between the inner cone and annular region.  This second hopper 
configuration will result in a steeper velocity profile across the blender and should result in better 
blending.  Figure 16 shows a comparison between the computed blender velocity profiles for 
these two blenders.  The blender with the higher flow rate ratio and lower conical hopper has a 
centerline velocity that is 15 times greater than the velocity at the side wall.  The blender with 
the two-to-one flow rate ratio between the inner and outer cones has a velocity that is only 4.6 
times greater than the side wall velocity.   

 

  
16a – Wall friction angle of 30 degrees; with 
a 2:1 flow rate ratio between inner and 
outer cones and no lower conical hopper 
placed below the blender.  

16b – Wall friction angle of 30 degrees; with 
3:1 flow rate ratio between inner and outer 
cones and lower conical hopper.   

Figure 16.   Velocity profiles showing the effect of the lower conical hopper on velocity 
profiles and flow rate ratio in cone-in-cone blenders 

  
The variance reduction ratio for these two blenders can be computed and compared for a variety 
of period input concentration fluctuations.  Figure 17 shows these results.  The steeper velocity 
profile shows a significant decrease in the variance reduction factor for blending.  However, for 
the case of a periodic input concentration there also exists a complex relationship between the 
input concentration frequency and the blender variance reduction factor.  There appear to be 
zones of input concentration fluctuation frequencies that will result in low variance reduction 
factors.   This effect may be due to the periodic nature of the input fluctuation and may not exist, 
or at least be reduced, for random concentration fluctuations.  It is clear from this Figure that one 
of the primary variables influencing blending is the flow rate ratio between inner and outer 
cones.  In general, the greater this ratio is, the better the blending will be.   Intuitively, this makes 
sense.   The greater the flow rate ratio between the inner and outer cones, the more distributed 
the layers become in the axial direction.  Hence, blending is better.        
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Figure 17.    Variance reduction factors for blenders with differences in the flow rate ratio 
showing a decrease in blender variance reduction with larger flow rate ratios 

 
This analysis also suggests that the optimal blender configuration will be one where the blending 
velocity profile is continuous and where the velocity in the center of the bin is an order of 
magnitude faster than the velocity at the blender wall.  This type of velocity profile can only be 
accomplished by using a conical hopper in conjunction with a cone-in-cone hopper section.  The 
strength of the analysis presented in this paper is the ability to make small modification to the 
blender design based on knowledge of the basic materials properties.  Blender optimization can 
then be carried out without extensive and expensive pilot scale blender tests.   Of course, 
prudence suggests that pilot scale testing should not be completely eliminated.  However, the 
analyses suggest a method of at least reducing the pilot scale trials to achieve optimal blender 
design.  Much of this design process can be accomplished numerically and then a small scale 
pilot unit constructed based of the optimal blender design.  This design methodology should help 
engineers intelligently select or design a cone-in-cone blender to work with their particular 
materials. 

       

Comparison to measured residence time distribution functions  

A small scale cone-in-cone blender was constructed.  The top diameter was 30.5 cm.  The hopper 
section consisted of a 10 degree inner cone and a 20 degree outer cone that connected on to a 
10.1 cm diameter conical hopper with a hopper slope of 10 degrees.  The inner cone in the 
blender section was designed to produce a flow rate ratio of three to one.  The wall friction angle 
against the hopper wall surface was 30 degrees.  This blender configuration is similar to the 
configuration producing the velocity profile shown in Figure 16b.  The analysis outlined above 
was carried out to compute the residence time distribution function for this blender 
configuration.  The fraction of total markers passing through the blender outlet as a function of 
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time is defined as the accumulated residence time distribution function (F(t)) for this scale 
blender and is shown in Figure 18 along with a measured cumulative residence time distribution 
profile for this blender configuration.  The initial marker appearance is the same for these two 
distributions.  In addition, the residence time distributions end after the same volume input 
through the blenders.  Agreement of these starting and ending points for the residence time 
distribution functions imply that the theory outlined above accurately captures the relationship 
between the centerline velocity and the velocity at the bin wall.  However, the discrepancy 
between the measured and computed cumulative distribution functions indicate that the actual 
velocity profile does deviate somewhat from the computed profile.  
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Figure 18.    Cumulative residence time distribution function showing the cumulated fraction 
of markers exiting a model blender due to a unit impulse of markers 

The differences between these distribution functions can be better seen when plotted as 
instantaneous residence time distribution functions (E(t)) as shown in Figure 19.   The measured 
initial peak is larger than the calculated peak and there is a peak near one bin volume that does 
not match the calculated profile.  Careful observation of the measure data may help explain these 
discrepancies.  During the testing it was observed that the flow profile across the hopper was not 
completely symmetric and flow was slightly faster on one side of the hopper than the other.  This 
non-symmetric flow profile could explain the spurious peak around 1.0 bin volume and the 
noticeable lack of markers around 1.8 bin volumes.  The likely cause for this non-symmetric 
flow is an off-center conical insert.  The relative flow between the inner and outer hoppers can be 
determined by the ratio of bin diameters.  However, if the insert is positioned slightly off-center 
the local velocity on one side of the bin would speed up based on the increased gap between the 
inner and outer cones while the flow on the opposite inside would decrease due to the smaller 
gap between the inner and outer cones.  The lack of dimensional tolerance could then account for 
the discrepancies in these two residence time distribution functions.   
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Figure 19.     Computed and measured residence time distribution function for model bin 

Blender effectiveness in the cone-in-cone blender depends on the velocity distribution across the 
blender.  Therefore, anything that changes the velocity distribution will also change the blender 
effectiveness.  Differences in wall friction angle change the velocity distribution and will result 
in changes to blender performance depending on the blender operation.  However, Equations 13 
and 14 also contain the effect of the local pressure gradient.  These pressure gradient values can 
result in differences in velocity profiles in the cone-in-cone blender.  Significant gas pressure 
gradients can affect mixing in cone-in-cone blenders when discharging fine powder materials.  
Gas pressure gradients arise from the fact that bulk materials are compressible and change 
porosity as solids contact stresses within the equipment change and are impermeable.  For 
example, consider a bulk powder material flowing at a slow rate through a cone-in-cone blender.  
The solid’s stresses increase as material flows through the bin.  This causes some consolidation 
of the bulk material and squeezes some air out of the solid’s pores.  Gas leaves the system 
predominately through the top material free surface.  However, the consolidation pressure in the 
bin or hopper decreases as the material approaches the outlet.  Decreasing consolidation pressure 
results in expansion of the bulk material.  However, some of the gas within the solid’s pores has 
already left the system through the top of the bin.  This results in a net gas deficit near the hopper 
outlet, creating negative gas pressures within the material and producing significant negative gas 
pressure gradients near the outlet.  These gas pressure gradients could be responsible for 
changing the local velocity profiles in the bin.  The cone-in-cone hopper situation is complicated 
by the fact that the inner cone wall is impervious to gas flow.  Thus, there exists a difference in 
radial gas pressure gradients between the inner cone and the annular region in the cone-in-cone 
blender.  This could significantly change the blender effectiveness of cone-in-cone blenders.  
Figures 20 and 21 show the expected gas pressure and gas pressure gradient profiles in both the 
inner cone and annular region for a typical cone-in-cone blender.   



���������	�
���
�
��
��������������������� � ���
��
����������������������	 ����!�"������#��!$��"�%�&!��

 
p 25 

200 150 100 50 0 50

0

1

2

3

4

5

6

Cylinder
Inner Cone
Annular Region

Gas Pressure (Pa)

H
ei

gh
t (

m
)

Qs 1360.8
kg

hr
=

 
Figure 20.    Gas pressure profile in cone-in-cone blender when operating with fine plastic 

powder at a flow rate of 1360.8 kg/hr (about 30% of the expected limiting flow 
rate for this powder).  Velocity ratio between inner and outer cone is 2:1 
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Figure 21.    Radial gas pressure gradient (dP/dr / γγγγg) in cone-in-cone blender when operating 

with fine plastic powder at a flow rate of 1360.8 kg/hr (+30% of expected limiting 
flow rate for this powder).  Velocity ratio between inner and outer cone is 2:1 
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Once the local gas pressure gradients are known, the radial velocity analysis outlined above can 
be implemented to compute the expected velocity profiles for the case of the local radial pressure 
gradients given in Figure 22.  This analysis can be applied to both the inner cone and the annular 
region to determine the velocity profiles at various local gas pressure gradients.  Figure 22 shows 
the expected velocity profiles in the 10 degree inner cone at different radial gas pressure 
gradients.  Note that the negative gas pressure gradient at the bottom of the inner cone is large 
enough to result in a funnel-flow velocity pattern.  If this high gas pressure gradient persisted 
throughout the inner cone section, it would induce a funnel flow velocity pattern in the blender 
and result in a preferred flow channel.   Luckily the gradients in other hopper elevations are 
smaller than this value.  Likewise, Figure 23 indicates that if gas pressure gradients in the 
annular section have large enough negative values, then preferred flow channels would develop 
along the outer wall of the inner cone.  Each of the velocity profiles in these figures has been 
normalized so the velocity at the centerline equals one.   
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Figure 22.    Normalized velocity profiles for inner cone at various local gas pressure 

gradients A1 = (dP/dr / γγγγg) 
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Figure 23.    Normalized velocity profiles in annular section of cone-in-cone hopper as a 

function of local gas pressure gradient A1 = (dP/dr / γγγγg) 

However, local velocity profiles at any elevation in the blender can be computed by assuming a 
two-to-one velocity difference between the inner and outer cone and computing the velocity 
profile from the local gas pressure gradient given in Figure 20.  Figure 24 shows several of these 
velocity profiles in the hopper section of the cone-in-cone blender.  This figure indicates that the 
steep funnel flow velocity pattern persists only near the hopper outlet.  Velocity profiles near the 
top of the cone section are actually flatter than those expected for normal mass flow without gas 
pressure effects.  It is not likely that the small zone of steep velocity profiles near the inner 
hopper outlet will promote complete funnel-flow behavior in the entire hopper section.  
However, increasing the solids flow rate will increase the magnitude of these negative gas 
pressure gradients in the lower hopper and increase the positive gas pressure gradients in the 
upper hopper section.  This suggests that one should expect to see a flow rate condition that may 
induce a preferred flow channel formation in the center of the blender during operation at high 
flow rates.  Conversely, the higher gas pressure gradient at the top of the hopper would likely 
result in overall average velocity profiles flatter than typical velocities in mass flow blenders 
without gas pressure gradient effects.  This suggests that the blending action of the blender may 
diminish as the flow rate of fine powder increases until the very steep profile in the lower hopper 
section occupies a significant portion of the bin, at which point the blender velocity profile 
produces funnel flow behavior.  The whole matter of the influence of local gas pressure gradient 
in cone-in-cone blenders is an interesting area for further study.  However, this theoretical 
analysis suggests that fine powders may be susceptible to preferred flow channel formation in 
cone-in-cone blenders if conditions are right.   
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Figure 24.     Velocity profiles in cone-in-cone blender at various locations in the blender.  The 

mass flow rate in this blender is 1360.8 kg/hr with a two to one velocity ratio 
between the inner cone and the annular section. 

Conclusions 
 
The strength of this paper is the ability to compute the residence time distribution function just 
from knowledge of material properties. The properties induce a unique velocity pattern in a 
given cone-in-cone geometry that can be approximated using limiting states of stress in the 
blender.  The radial velocity assumption allows radial velocity fields to be extended to annular 
flow channels.  The analysis in this paper suggests that the blender design is somewhat 
independent of wall friction angle for conditions where there are several input concentration 
fluctuations in a single blender volume.  However, friction angle does play a role in blender 
performance for conditions where the blender must mix large-period input fluctuations.  Radial 
velocity profiles in cone-in-cone blenders can be extended to include the effect of local gas 
pressure gradients.  There is some evidence that these gas pressure gradients can induce funnel-
flow behavior in the blender, depending on the operation flow rate, and may result in preferred 
flow channels during operation.  This is an area for further research.   It is the contention of the 
author that the method of blender evaluation outlined above could be used with other blender 
configurations to develop a bridge between blender effectiveness and the material properties 
which control the velocity profiles in the blender.  This general methodology, if successfully 
implemented, will allow scale-up of blenders.  This will likely require solving complex 3D 
differential equations with free boundaries to obtain an approximation to the local velocity 
patterns.  Even though this is a formidable task, the author suggests this road as the way forward.  
Advances in volume of fluid finite element methods or a combination of DEM and FEM 
approaches may provide the necessary computational power to accomplish this task.   
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Nomenclature 
 
A1 Dimensionless radial pressure gradient body force ratio 
A2 Dimensionless �~-direction pressure gradient body force ratio 
BV Bin volume 
Capblender Blender capacity 
Cin Input concentration 
Cout Output concentration 
DT Top diameter of outer cone (m) 
dT Top diameter of inner cone (m) 
DB Bottom diameter of outer cone (m) 
dB Top diameter of inner cone (m) 
DO Outlet diameter of cone-in-cone hopper (m) 
E(t) Residence time distribution function E(t) = dF(t)/dt 
F(t) Cumulative residence time distribution function 
P Gas pressure (KPa) 
QS Solids flow rate (kg/hr) 
r Radial coordinate (m) 
Rvel Ratio of inner and outer velocities in cone-in-cone hopper 
rb Distance from the hopper centerline to hopper radial coordinate (m) 
Rb Distance from the hopper centerline to the hopper wall (m) 
s �-dependence function for radial stress 
Sdevin Standard deviation of input stream 
Sdevout Standard deviation of output stream 
V(�) Radial velocity (m/s) 
V(0) Velocity at hopper centerline (m/s) 
V(rb) Radial velocity in terms of distance from centerline (m/s) 
Vcenter Velocity at hopper centerline (m/s) 
VR Variance reduction factor 
� Powder bulk density (kg/m3) 
� Angle between effective wall body force and gravitational vector direction (deg) 
� Effective internal friction angle (deg) 
�w Wall friction angle (deg) 
�we Effective wall friction angle including gas pressure gradient terms (deg) 
�r Normal stress on the plane perpendicular to the radial direction in a spherical 

coordinate system (KPa) 
�� Normal stress on the plane perpendicular to the �-direction in a spherical 

coordinate system (KPa) 
�� Normal stress on the plane perpendicular to the �-direction in a spherical 

coordinate system (KPa) 
� Mean stress (KPa) 
�1 Major principal stress (KPa) 
�3 Minor principal stress (KPa) 
�w Half angle of conical hopper measured from the vertical (deg) 
�i Half angle of inner conical hopper measured from the vertical (deg) 
�o Half angle of outer conical hopper measured from the vertical (deg) 
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�L Half angle of conical hopper at bottom of cone-in-cone (deg) 
� �-direction coordinate (deg) 
� �-direction coordinate (deg) 
�w Wall friction angle (deg) 
�we Effective wall friction angle (deg) 
�r� Shear stress on the plane perpendicular to the radial direction acting in the �-

direction in a cylindrical coordinate system (KPa) 
�r� Shear stress on the plane perpendicular to the radial direction acting in the �-

direction in a cylindrical coordinate system (KPa) 
��� Shear stress on the plane perpendicular to the �-direction acting in the �-

direction in a cylindrical coordinate system (KPa) 
� Angle between the major principal stress and the r-coordinate direction (KPa) 
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