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Abstract

Segregation in industrial settings is responsibleaf significant amount of lost product due to
poor quality issues. In the pharmaceutical inguystegregation of the active ingredient is a
critical problem that can lead to loss of life dmypical harm if not closely monitored and
controlled. Therefore, finding a way to control gmedict segregation is critical to optimizing
product design or to mitigate quality issues witlkipowders and granules. Obviously, the best
way to handle segregation is to create a produtsisting of a mixture of key ingredients that
does not tend to separate when subjected to tymtalulus in handling processes and
distribution networks. While this is the best aitgive, it is often difficult to fully achieve in
practice. One of the needs to accomplish this got find a method of easily characterizing a
mixture to measure segregation potential. Thisepamdresses that need. It describes an
automated methodology used to measure segregatpvaluates that method for consistency,
repeatability, and correlation to previous methodlee method first forms a pile of material in a
controlled manner and then uses reflectance spedwuwlifferentiate between components in a
mixture along the pile. The method of computing doncentrations and segregation intensities
from reflectance measurements is presented. Repgmriments are done to determine the
expected error of the method. This error is fotmdbe within 7% from test to test for a badly
segregating material and within 0.5% for a modéyadegregating material. The method also
uses a complex data acquisition scheme and nurhaneadysis of large amounts of data. We
measured the error of the data collection and spu@s# numerical analysis and found the error
for computation to be within 0.3%. We compared tioi other manual methods and found good
correlation to these methods of segregation meammnegenerating data within 7.8% of other
methods.
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I ntroduction

Currently, the pharmaceutical industry relies ore ayf two formulation routes to mitigate
segregation of granular feed stocks. The firsthoddlogy is dry blending and is by far the
simpler route. In dry blending, individual ingredts are mixed to form dry blends which are
packed into tablets and capsules. The second datygy is wet granulation. In wet granulation,
raw ingredients are combined with liquid, granudate form large sized particles, dried to remove
binding liquid, sized to assure quality productl gacked in tablets and capsules. There is almost
always a recycle step in a wet granulation phasehwvbomplicates the process and batch
inventory management. In addition, wet granulatian cause unwanted reactions that affect drug
quality. Dry blend is simplest, but more proneségregation. Wet granulation is more costly and
complex, but less sensitive to segregation. Ifjmbs, pharmaceutical companies will choose the
simpler process. Therefore, a tool to determieepibiential segregation problems of dry blends is
needed. The methodology presented in this papeessks the specific need in typical dry blend
processes and it is hoped that the tool and mekbggleaan be extended to potential segregation
measurement in wet granulation processes as Wwelddition, the tool and method described can
be applied to the food, chemical, cosmetic, paimtydered metals, and ceramic industries.

Segregation is a mechanistic phenomenon. Therafogeuseful to understand the magnitude of
segregation, measure the pattern, and if possilbée the cause. Segregation is also a multi-
component phenomenon where one component may haver several causes of segregation. For
this purpose, a small review of some of the caudesegregation may be instructive. The

following is a short list of some common segregatitechanisms:

Sifting

Fines may sift through a matrix of coarse partidesing handling. This mechanism requires
that the void space between adjacent particlesatgge lenough to permit fine particle to pass
through. Generally, this requires a particle sidgference of about 3:1 [1]. Inter-particle motion
is also required to provide a means of exposingtgmpids spaces to fine particles [2]. The
fines must also be free flowing enough to prevenhiag between adjacent particles and the
void spaces must be empty enough to accept finaclear [3]. In general, this type of
segregation produces a radial pattern as matenalsf a pile in process equipment [4]. The
fines accumulate near the pile charge point andedse in concentration toward the edge of the
pile.

Angle of repose differences

Two materials may have different angles of repoBeus, when these two materials flow down a
pile they essentially create overlapping piles whigre material with the steepest repose angle
accumulates near the top of the pile while the nadteith the flattest repose angle accumulates
near the pile edge [5]. Generally, there is arithistion of these two materials along the pile’s
surface. Repose angle differences of about 2 degran result in significant segregation [2].
Material of different particle sizes can possegiaent difference in repose angles to cause this
type of segregation. However, particle size ddfere is not a prerequisite angle of repose
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segregation and materials of the same size canmatepaa this mechanism. In addition, your
process must also generate piles during handlipgamessing to cause this type of segregation.

Air entrainment

The mixture may contain fines that are small enaaghe carried by air currents in the handling
system [6]. These fines drop out of the air stremhen gas velocities decrease below the
entrainment velocity. This causes separationr@siand coarse in handling systems. The fines
generally deposit near the container walls. Thmetof segregation requires a source of air
currents in process equipment. This source otair come from free fall of a compressible
material. When the falling stream impacts the maltéevel, the entrained air is pushed out of
the interstitial pores and carries the fine pagdn the resulting dust cloud. This segregation
typically causes a radial pattern during pile fotima but the fines are at the bottom of the pile
and not the top [2].

I mpact fluidization

If the mixture is fine enough, then air trappedtlse interstitial voids can cause material to
fluidize. As a large particle drops into this flided layer, momentum causes the large particles
to penetrate this fluid layer, resulting in a topbiottom segregation of fine and coarse particles
[2]. This mechanism requires a source of air dredability of the bulk material to hang onto
entrained air for a moderate amount of time.

Any materials can separate due to any differenceanticle scale properties provided that the
handling system can induce a stimulus that enhatiwastype of particle separation. For
example, surface friction differences can causdeanijrepose segregation, but only if piles are
formed in process equipment. The fall height aretemal flow rate change the amount of
entrained gas in the material and strongly infléeeaar entrainment. But, this will only be
important in a process that is subject to large fedl distances. This suggests that any viable
segregation tester must have the ability to vaity beed and pile formation conditions to be able
to correlate with reality. Some segregation testajlect an arbitrary amount of gas that is often
much greater than would be present in any realityrdeed process, and then measure a
segregation potential of fines versus coarse basethis stimulus [7]. Such a segregation
method has no ability to predict reality. To bduadble, a segregation method should at least
approximate the type of stimulus in typical handliprocesses and provide some means of
controlling this stimulus to allow for matching pess operations (i.e. the test method should
subject the material to the same or similar behlafoaind in filling containers in typical
systems). This then becomes the first judgmetdraifor a viable segregation methodology.

Another need is to have a segregation method #raneasure more than just two components.
Real mixtures are comprised of multiple componen@®urrent segregation analysis methods
focus on measurement of just two components, tilpiiaes and coarse [8] [9] [10]. The tool
and methodology presented and reviewed in thisrpapkeconsider simultaneous segregation
potential measurement of a mixture comprised ofaup components. This limit is somewhat
arbitrary and could be extended to a greater nunobetomponents. However, data from
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mixtures of up to 6 component has been evaluatqutesient. Not all available data will be
presented here since the goal of this paper isittoduce and validate the robustness of the
method. Thus, the ability for the method to beegalty applied to more than two components is
an important criterion for a robust segregationysisa method.

Another need for any measurement system to be ssfotes that the method should produce
results that do not change and are consistentiwélmeasonable error range. Both the overall
calculations in segregation pattern and segregathtemsity for each component should be
reasonably robust. Thus, robustness and consystetite third criterion for a viable segregation
methodology.

Finally, where possible the new methodology shdugdcompared to at least one previous
methodology to assure reasonable correlatiors rbt required that the new methodology match
exactly with previous methods since each method giae slightly different results. For
example, there are dozens of particle size meamntetachniques which presumably measure
the same thing. However, none of these methodsunegrecisely the same patrticle size
distribution. The same can be said of segreggbiotential measurements; the segregation
potential measurement from technique to techniqillenat necessarily fall on top of each other.
However, they should be reasonably close. Thusfitial criterion is that the test methodology
should correlate with other measurements and st ieaasure the same trends.

Method and Materials

The new methodology consists of filling a containgth a representative sample of product in
such a way as to induce segregation similar to whatmight find in a typical handling process,

then measuring the segregation pattern using aicabptechnique, and computing the

segregation magnitude and intensity from the meakssegregation pattern (Figure 1). Each of
these criteria will be examined for this new metbhlody and, where possible, quantitative
judgments be made on how well the new test methtsfigs the criteria.

Dump material into box and
observe the change in color
intensity along the pile as
measured just below the top
surface of the pile (rectangle
section).

These changes in color intensity
are an indication of differencesin
either chemical composition orin
particle size and can be used to
estimate the segregation of key
componentsin the system.

Figure 1. Schematic of segregation tester
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The following basic procedure was used to meashweeseégregation pattern of multi-component
mixtures. Only the general steps are presented tiealetails of each step are found below as
well as details of the calculations required.

1. Feed the mixed material into the segregation stioelel bin at a controlled flow rate and
preset fall height (as discussed above).

2. Record the top position of the pile and the bottdrthe pile (see Figure 3).

3. Determine the active measurement zone by takingsunements of the mixture parallel

to the pile and at a depth of 6 mm from the topesér (see Figure 3).

Record the overall average concentration of keypmrants in the mixture.

Measure the average spectrum of each pure componire mixture.

Select a view port size for segregation measuresneimixture placed in segregation

slice model bin.

7. Select the number of view port areas to examinegalbe pile and then select the number
of spectral measurement points to acquire per pien

8. Measure the average spectrum of the mixture materaview port for all the view port
areas desired along the pile.

9. Use the spectra of the key components, the ovavallage concentrations of the mixture,
and the spectra of the mixture collected alongoileeto compute the local concentrations
of key components along the pile.

10.Use the concentration profiles to compute segregaiitensity numbers for each key
component.

o gk

While the above procedure is general in natured#tails of each step allow the user to obtain
reliable data. The reasons for each proceduratehwill be explained so the reader will know
what procedural details are important to succeskdtd collection.

The first detail to be considered is control of tileng procedure to mimic or relate to behavior
in a typical process. There are two process smsitto consider when using segregation test
data to predict process behavior. One generalisabe static segregation pattern created when
a material fills a process container. The secoederpl case is segregation that arises in a
dynamic operation condition. For example, doestds¢ data predict segregation that may be
present in a rotary shell blender as piles are éornand re-formed? Likewise, does the
segregation test data correlate to the particlarsgipn that may occur in a fluid bed?

We will consider the static condition where matefiae falls into a container at a given rate.
Consider what happens in this case from a physaeglpoint. A collection of particles falls into

a container. These particles tend to spread gsadbeelerate. They may travel as a stream or
they may travel as individual particles. In eitloase, the falling material entrains air in the
surrounding area as it falls. If material travatsa stream, then it impacts the pile at a velocity
near that given in equation 1.

V max, =/20h (1)
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This initial velocity free fall velocity depends dhe distance of the falh]. However, if the
solid’s flow rate is small, then the free fall stne spreads and the velocity of impact depends on
the terminal velocity based on air drag (equatipn IB this case, the initial impact velocity is a
function of the effective particle sizB®), density of solid particlegos), density of the aifoxi)

and viscosity of the aifi4;). The actual impact velocity will be somewhere inwesn.
Velocity increases as per equation 1 until it resctme terminal velocity in equation 2.

B 530\3/4
Vmin,, =[2M”s ) (D J @
15[pair Euajr

In addition, the impacting material has associdieetic energy. When material impacts the
surface, the surface can compact and deform pdédigticlf this compaction is excessive, then the
strain energy required to accomplish this composssiill influence the kinetic energy of the
free fall and reduce the velocity. We assume libggt of strain energy due to compaction with
typical materials will be negligible. Thus, we tealy with the drag forces slowing the particle
free fall velocities. We assume that, when pagtidhit the pile, they slid down the pile at the
velocity compatible with friction angles of matdrigliding on material. The velocityVfie)
traveling down a pile of length.) is shown in equation 3.

Vpile = \/Vimpact2 + 2 Eg D‘ [(tar(gr ) - tar((”)) []:Oier ) (3)

This velocity depends on the pile slope an@e and the effective friction of material flowing
down the pile(@. If the friction angle is greater than the pilepdaangle, the velocity down the
pile slows and eventually stops. In fact, the piog distance can be computed using the
equation above (see equation 4).

_ 2
Vimpact (4)

"7 2y an(@) - tang) wod8)

For the case of non terminal velocity flow, thetaise traveled down the pile is given by
equation 5 and shows a linear relationship betvdestance traveled down a pile and fall height.

-2[h (5)

" 2ftan(g) - tang)) wod8))

This implies a linear scale relationship betweenpdneight and distance traveled on a pile for
the process and small scale segregation test héppeon terminal velocity flow in a process.
For terminal velocity behavior, the scale relatluipsbetween the lab scale experiment and
process geometry can be computed by equation 6.
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In either case, there exists a scale relationseipden the process and small scale segregation
test hopper. The simple analysis described aboggests that two main variables, namely free
fall height and solids flow rate, are importantsicaling between lab and full scale conditions.
For terminal flow conditions, some information abquarticle size will also be required.
Therefore, the segregation tester must have, asienam set of scale parameters, the ability to
adjust both flow rate and fall height. To accomsiplihis, the tester was outfitted with a vibratory
feed system attached to an extendable platforme pidsition of the feeder can be raised and
lowered using this extendable platform. The vibratcontrol can vary the flow rate into the
segregation test hopper.

(6)

Segregation Measurement Tester

Drop point

Adjustable arm | /| | | A E— '

on feed system Controls to

to achieve change vibratory
different fall 7 feed rate

height

Figure 2. Segregation tester flow control

The second detail involves properly feeding mateade analyzed into the instrument. A feed
tube directs material into the slice model to fottme pile (Figure 2). The vibratory feeder
pan/tube is flat on the bottom, is just as widdhesslice model and directs the flow into the
segregation measurement chamber. This is a ¢ngard of the feed design. As material exits
the vibratory feeder, it does so in a sheet ordsgfiarticle curtain that distributes the particles
across the feeder tube and supplies a consistamttdl the entire width of the segregation slice
box. This builds the pile without any radial pileects. The hopper feeder tube is positioned
such that the top of the pile formed in the sediegaest cell is at one wall of the segregation
test cell (Figure 3). The pile surface is a pldra forms on one side of the segregation test cel
or slice model. Filling the cell in this fashionopluces the same pattern at the front surface of
the slice model bin as on the back surface of fie snodel bin. Past researchers [11]
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discovered that wall effects in slice model binshwpowders and granular material require that
models be 25 mm or wider to prevent wall induceadiag.

Fill to this line

Read Pile Height

T~ MeasurementZone

Figure 3. Segregation test hopper

Banding can also naturally occur with slightly ceive materials as they form a pile. Cohesive
materials build up the pile and then periodicalhgcade down the pile, sifting during the cascade
event and producing layers of fines and coarse [T2js is a natural phenomenon that is part of
real systems. Feeding material into the slice hatiere the walls are close together causes the
same banding behavior. The tester must measureagi@egation events and not tester induced
events. Therefore, the segregation test cell widih limited to a minimum 25 mm to limit the
occurrence of banding in the segregation test bin.

The segregation bin measurement zone is positipaeallel to the pile surface at a depth of
about 6 mm below the top surface of the pile. piheis observed through an optical glass plate
at the back of the test cell with a standard fibygtic reflectance probe angled at 45 degrees to
reduce the spectral reflectance of the glass sesfdtis assumed that the entire zone parallel to
the pile surface is representative of the averaggenal placed in the tester.

It was discovered through trial and error that, badly segregating materials, segregation may
be more prevalent at the end of emptying the femapér. This effect occurred in the last 11%

of the emptying cycle for material in the feed biffo assure a representative sample in the
segregation test cell, the feed hopper must kedfith small piles to minimize the segregation in

this bin. Flow into the tester segregation tedit sleould be stopped when the level in the feed
bin is 30% empty (or to the indicated fill line tme test cell). Thus, we avoided conditions that
would cause segregation due to feed bin operation.
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To confirm the consistency of segregation from btckront we filled a slice model made of
glass end walls with a poorly segregating matexnal captured an image of the back and front
material surfaces to determine how closely theseyen agreed using standard gray scale image
correlation algorithms [13] [14]. We computed theerage gray scale as a function of
dimensionless radius from the top of the pile amsgduthis data to compute a regression
coefficient. The computed regression coefficiemtthis analysis is = 0.971 % = 0.942) which
suggest that 5.7% of deviation between these cusvdse to random uncontrolled events and
94.3% of the deviation is due a linear relationsbigtween these curves. A regression
coefficient of 0.971 is a strong positive coeffitiesuggesting that Figure 4 shows reasonable
agreement between the front and back segregatiofiiesr and providing evidence that the
controlled feed method and observation of the sidthe pile can relate to segregation in real
systems as the pattern measured on either side @egregation test cell is effectively the same.
We must still prove that observations measurechatside correlate well with volume based
concentrations measured across the test cell. tidddl evidence is presented below when
segregation profiles measured with the new tedinigoe are compared to alternate manual
segregation test measurements incorporating theeotrations based on volume in the test cell.

180

160 A

r=0.971

140 A

120

Front Back

100

80

60

Average gray scale value (0-255).

40

20

0 0.2 0.4 0.6 0.8 1
Dimensionless radius (r/Rt)

‘ o Front of slice model o Back of slice model ‘

Figure 4. Correlation between front and back segregation pattern

Controlling flow behavior into a slice model, alongth the ability to control both the feed rate
and drop height, suggests that the segregatioarteah be tuned to approximate process fill
behavior. The data from this tester should alse lsgoplicability in dynamic segregation where
segregation in blenders that form piles or intetipi@ shear takes place. However, this test
technique may not have applicability to conditiomkere the bulk material is fluidized and
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segregation is caused by the act of fluidizatiohhe current filling methodology must be
modified to accomplish this task.

The next detail in the methodology is to measuflectance spectra of the mixture along the pile
and the pure components and use this data to cemjpet concentration profile of key
components down the pile. However, a discussidh@theory behind these measurements and
calculations will prove useful.

Theory/calculation
Multi-component Segregation Theory and Measurement

To be of value, the measurement technique mustleeta quantify segregation patterns for
more than two ingredients. Literature is full ofaenples and theories outlining the segregation
of bimodal mixtures. These measurements and #wids developed from these measurements
are over simplified. If the component of interdses not deposit in one location, then another
component increases its concentration to make epdifference. = When three or more
components are added to the mix (multi-componért)situation becomes much more complex.
It is possible that two components segregate velato each other, but adding additional
components expands the potential interactions feignily. Theories describing this complex
situation must allow for this possibility. Likevasthe measurement technique must be able to
easily measure the segregation pattern of threeooe components. If the subject of segregation
modeling is to move forward, the measurement ottincoimponent segregating systems is at the
heart of the discovery process. The author’s ctite is that sometimes the modeling leads the
measurement, and other times the measurement lg@adspoints the direction for the
mathematical modeling. However, both are requinedrder to make significant forward steps
in understanding a scientific topic. Very little being done in the area of multi-component
segregation theory largely due to the lack of astrument capable of easily measuring
segregation potential of multi-component systemse Tollowing analysis presents a general
method of measuring multi-component segregationerpial.  Several assumptions and
simplifications have been made as a means of mdkegalculations and measurement simpler.
At the heart of these measurements are the ewvauatid use of reflectance spectra. The
examples presented in this paper to validate ttfentque use reflectance spectra in the visible as
well as near infrared (NIR) wavelengths.

A basic discussion of reflectance spectral measemésrmay be useful to the reader. If diffuse
light of a given wavelength shines on a sample atiges, all at a known distance from the
probe, the intensity of the light reflected baclpeleds on three primary interactions. First, the
particles can disperse the light based on simglet Iscattering. In this case the brightest
intensity is caused by the finest particles. Sdg¢ainthe particles contain colored pigment or
chemicals that preferentially absorb a given wavgte of light, then the light being reflected

back is only that which was not absorbed by cenpggment or chemicals. A surface looks red
because all light hitting the surface except thé kght is absorbed. The intensity of a

reflectance spectrum, then, is a function of theenulsal and pigment makeup in the

measurement zone. Finally, in some cases, lighbrlled activates bond in a particular
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chemical, absorbing photonic energy and convertinmto photonic energy of a different
wavelength. This is the basic principle involved fluorescence. The analysis presented
assumes that fluorescence is not a major effetchensystems studied. Thus, intensity of a
reflectance spectrum is a function of the partisize and the pigments or chemical in the
observation zone.

A reflectance spectrum also depends on the distamtiee target. Non-laser light expands at
some angle as it emits from the source. The iitieasthe light reaching the target depends on
the distance from the source and follows aguare law. When light hits the target it is Ulsyua
reflected back in a diffuse manner. Thus, notadlithe reflected light is captured by the
reflectance probe, even if none of it is chemicalbgorbed

Consider the case of a powder material surfaceeglagainst an optical glass plate. The
distance to target depends on the position of énege surface relative to the plate surface. The
probe may be at a prescribed distance from theappiate, but the target is the particle on the
other side of the plate. If the light shines oe tharticle directly against the plate, then the
intensity of light is a maximum value. If the lighits a particle between the voids of the particle
pressed against the plate, then the intensity ef réflectance spectrum is lower. When
measuring a reflectance spectrum of a powder thgkbe variations in spectral intensity due to
particle size distribution effects. A single retiece measurement is not sufficient to determine
the average reflectance spectrum of the powdenrefdre, we must average multiple spectra to
obtain a representative spectrum value.

An integral part of the measurement process usirsgtéchnique is the basic assumption that all
data collected by spectral measurements is forrrahtbat has a known average concentration
of key components. Simply put, all spectral datdlected — when averaged together —
represents the spectrum of a consistent mixtureensédhe specified concentrations of the key
components. These average concentrations (stegredyequired for the calculation of the

concentrations in the mixture. They aid in thibcation of the spectral information to convert

the measured spectra to concentrations. Correldhtifying the expected concentration of any
given component in the mixture is a critical detail

In step 5, pure components are placed in the coemgotrays in a loose packed condition
(Figure 5). Care is taken during this proceduréltéhe component trays by scooping material
into the tray using side-to-side motion to avoidiagle pile in the center of the tray. The
object of this filling process is to present to thygical glass a representative sample in terms
of particle size. Thus, the trays were filled witinimal segregation. As pointed out above, a
single measurement is not sufficient to characterine average spectrum of any pure
component. The probe measurement area is aboumr®.@nd ten measurements are taken at
offsets of 1.2 mm to assure some overlap of splecteasurements. All ten spectra are
averaged. The averaged spectra represents theadgemerprint of each pure component in
the system. Care is taken to avoid measurementstineaomponent tray edge or top of the
component tray. It is critical that the probe meament position for the material in the
component trays be at the same distance as theureezent position for the mixture. This is
done by calibrating the distance between the pestekthe optical glass. The final calibration
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is done by placing a homogenous reflective surfacdhe glass in each measurement area
(segregation bin and pure component trays areasadjusting the intensity of the signal to be
uniform at each measurement location.

Fillthe component trays

Figure 5. Filling the component trays

Detail six requires identification of the smallespresentative size that describes the segregation
event(s) with the material of interest. Segregatiteasurement is a scale issue. The size of the
chosen viewport should be large enough to contarapaesentative number of particles, yet
small enough that differences in local compositiares not lost in the averaging scheme (Figure
6). In general, when no clear banding or patterobiserved, then selecting the view port to be at
least 10 times the average patrticle size limitsettier between consistent view ports to below
1%. If banding exists, then the view port mustdrsge enough to cover two banding periods. If
there is no clear cut way to assign the viewpbentseveral view ports should be selected and
calculations performed using all of the view pades. The ideal view port size is found by
plotting the segregation intensity factors as acfimm of viewport size. The measured
segregation intensity factors converge to a cossistalue when the view port size is large
enough (Figure 7). Figure 7 shows that sand waithaverage particle size of 1500 microns
requires a view ports size of about 4500 microngrder to reach a stable segregation intensity.
This does not mean the view port must be exactigethimes the average particle size because
particle size, shape, banding and segregationrpdtienation are all reasons that the view port
may need to be changed.
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Define the size of the view port and measure the
spectra along the top of the pile. Adjacent viewports
can overlap and tester can measure concentration at
up to 50 locations along pile.

Figure 6. Typical measurement zone along pile top surface

Steps 7 and 8 require the acquisition of a spectarthe mixture at each location of interest.
The probe measurement zone is about 2.0 mm in teamddeally, adjacent measurements
should touch or overlap. This implies that a 12 mmawport should have about 36
measurements (Six on each side) to assure a gaedage. If the viewport is 10 mm, then 25
measurements (five on each side) would be sufficieThe selection of the number of
measurements in each view port is an optimizatgsue. Larger measurement increments
require some acquisition time, but will give a bettesult. A view port greater than 14 mm
would require more than 49 measurements to be geert keep the optimal coverage. Taking

49 measurements at 50 locations along the pileinesgjabout 30 minutes to acquire data and
perform the required calculations.

Segregation Variance as a Function of View Port Size for Sand
Dp=1500 microns
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Figure 7. Segregation variance as a function of view port for sand mixture Dp=1500 micron
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The next detail involves the decision regardingtsipe of spectrum used in the mixture analysis.
This ninth step requires a spectral mixing law isightly general to be used for all types of
materials.

One option is to use the complete reflectance sittgrspectra, adjusted for black balance, the
first derivative, or the second derivative of thamplete intensity spectra. The intensity can be
scaled relative to another intensity spectrum af ohthe pure components. This enhances the
differences between the peaks from different coreptsr One advantage of using the second
derivative is that the second derivative of the MIRvisible spectra removes most of the spectral
information due to particle size and other influem¢hat could affect the spectra intensity. The
result is a signal that contains much of the chahuc color difference information with little
particle size effects. Even in this case, therstiis some influence of particle size and other
effects. Thus, we used a spectral mixing methapotbat includes the effect of particle size,
particle orientation, and the filling of voids bet@n the coarse particles. If the particles were
spherical and all the same size, then there woellddboptical difference between the particles in
the mixture and pure particles placed in the corepbirays. In this special case, the mixture
spectral intensityrSmix;(4) would be a simple linear combination of the spéatrensity of
pure componentsFG(A)) based on the local fractionxfi(j)) of each component. However,
smaller particles fill the voids between coarsetiplas, creating a shadow effect for the coarse
particles. These fine particles within the voidsupy a proportionally greater percent of area
than the volume fraction would suggest. This iaths that a linear combination of pure spectra
will not account for the mixture spectra. The miet spectra will bias toward the fine materials.
Likewise, if one component is a flake, then theeotation of particles relative to the glass will
determine how much area the spectral probe seeste Bre other size and shape effects that can
bias the spectral area probe sees for any one ewnpo Instead of creating a robust model to
account for all of these potential probe view efe@ weighting factor is added to the additive
spectra law to account for the probe measuremeaa effects. There is a unique weighting
factor for each component. In reality this weightfactor is a matrix or tensor because there is a
weighting factor for each component and potentifdlyeach particle size. For the purposes of
this work, it was assumed that the weighting factare dependant only on the components.
With this simplifying assumption, the spectral dod equation can be modeled by adding a
weighting factor for component V) to the linear combination of spectra (equation 7)

FSmix, (/1)=Zvvi 0, , (FS(4) 7)

Equation 7 represents the computed spectrum fgf'thesition on the pile. There will be one of
these equations for every position measured orpilee An error function (equation 8) was
defined as the sum of the square difference betwleemmeasured spect(emix(A)) and the
computed spectrgSmix;(A)) for all the spectra measured along the pile.

Error = Z (FSmixj (1) - Fmix; (1 ))2 (8)
J
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The goal is to minimize the error function giveneiquation 8. However, there are several other
constraints that must be met for the optimal sofuto be valid. At each point on the pile the
fractional concentrations of the components mush ¢a 1.0 (equation 9). Likewise, all
fractional concentration values must be betweerafd1.0 (equations 10 and 11).

1= WD, ; forall ] (9)

xf, ;>0 foralliand] (10)
xf;>1 foralliand]j (11)

Finally, the average of all fractional concentraidor each component in the system must equal
the total overall mixture concentratioxftft;) equation (12).

Z\NI Ddivi

xftot, =1——— for all i (12)
npts

Equation 8 provides the target optimization funttio Equations 9 through 12 provide the
equations and constraints to be solved to gendhnatéocal concentrations of key components
along the pile. All of these equations must beewitogether.

Spectral mixing methods used by other researchatsinto one of two categories. Some
methods [15] [16] [17] measure the spectrum ofpthiee compound and store this information in
a data base of spectral fingerprints. Cross catiogl techniques are used to compare these
database spectra to new spectra and the percemtoh or correlation between the new spectra
and the database spectra indicates the likelihbatthe new spectra is identical to a spectra in
the data base. If several mixtures of spectraraitee data base, then this method can be used to
approximate the concentration of the new mixturstayistical correlation with similar mixtures.

Other spectral mixing methods [18] [19] [20] obsemhe spectra of a prescribed mixture and
focus on variation of spectra with change in onegonent. The spectra of samples containing
various known concentrations of the key componentinterest are recorded. Usually, a
particular wavelength or band of wavelengths thetws a lot of intensity variation with the
component of interest is used to create a leastregicurve describing the relationship between
the concentration and the spectral intensity. Qhterelationship is defined, then the mixture
spectrum is analyzed and the intensity in the wength band of interest is used to convert the
intensity to a concentration of key components. mliltiple concentrations are needed, then
multivariate least squares analysis needs to bdogeyb to compute the other concentrations
from the spectral data.

The reflectance spectral signal is a function glitiabsorbed by the chemical species and light
dispersed or scattered by the particle size ofolserved surface. This relationship was first
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postulated using the Kubelka-Munk theory [21] [22]reflectance of films or sheets. The net
result is that reflectance is a function of theordkK/S) of the absorption coefficienKj and the
scattering coefficientS). The fact that reflectance is a function of tlaio of these two
coefficients complicates the analysis, for one ndestonvolute this ratio to take into account
the effect of particle size (scattering) and chedinecomposition (absorption). However, if the
system of interest is governed primarily by onefficent or the other, then a mono-modal
relationship will exist between either absorptionl aeflectance or scattering and reflectance.

Results and Discussion

The tester compares the computed intensity curtie the actual measured curve and adjusts the
weighting factors and local fractions at all measlulocations along the pile to minimize error
between the two curves. In addition, the methaelus solve this set of equations is a non-
linear least squares optimization with constramsed in NI LabView®. This is a standard
solution technique that combines the constraintsdata in the same matrix and solves for all of
the concentration and weight factors together [2B]is assumed that the total collected data
represent the average material placed in the testhrs provides a method of simplifying the
calculations. Normally, an NIR or visible spectrakasurement requires that the spectra of
several known concentrations of components in durexoe entered in the NIR or visible unit to
act as calibration spectra to “train” the instrumeihe spectra of these various concentrations
would normally be used to generate a regression Ipdtween concentration and spectral
intensity at some key wavelength of light. In thmew method the spectra of the pure
components and the fact that the overall averageerdration is known provides the means of
training the instrument. The complication is thHtthe spectral data is required to compute the
concentration data requiring the solution of a large number of simultaneous equations. The
software takes into account all the spectra and,thsing least squares correlation techniques,
determines the best guess of the concentratioeyptkmponents. The result is a measurement
of concentration of key ingredients along the langft the pile for all measurement points along
the pile (Figure 8).

There is not another method that currently measilnesegregation profile of multi-component
mixtures, so comparison data in the literatureacking. However, seven mixture systems were
studied to ascertain if the segregation pattern wiaslar to manual segregation patterns
measured in similar tests. These manual segregtesis were done by filling a slice model
with a mixture, carefully tipping the slice modeddkward, removing the front plate to expose
the material in the slice model, sectioning the abphe pile into 5 or 6 sections and manually
measuring the concentrations of key componentaah sample collected along the pile. This
procedure was repeated for seven different systeor#taining between two and five
components. This manual segregation method wapaed to the spectral segregation method
described above. The data from the new spectgaégation tester was measured at more points
along the pile than could be collected using thaumhmethod. Thus, the data was grouped and
averaged over appropriate dimensionless radiussatcompute points comparable to the data
measured using the manual method. One such data peesented in Figure 8, describing
segregation of three types of bird seed. Thereery good agreement between the manual
measured points and the concentration points getkfeom the spectral segregation method.
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Based on the complete set of data generated frevalidation method, the standard deviation
was estimated to be 2.6%. This suggests thatetvenmethodology approximates other methods
of measuring segregation with reasonable accumdigating that the spectral method described
above can be used to accurately estimate segregatiwentration profiles of complex mixtures.
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Figure 8. Segregation variance compared with alternate method of measuring
segregation for a mixture of three bird seeds

If the measurement method is to be of value, thlygegmtion measurement procedure must be
reproducible. Repeatability should be reasonablen avith very easily segregating material. A
protocol to test this repeatability sensitivity wdsene using the segregation measurement
procedure outlined above. A set of three free iihgnwsands of different size and color were
mixed. This mixture was introduced into the tedtaree distinct times and the procedure
followed to generate the concentration profileg{fes 9 and 10). Twenty samples along the
pile were analyzed and the deviation off of therage for these three tests was measured. This
experiment suggests that, based on a three sigtmaaes the error caused by repeated
measurement is about 7.0% for a material thatgklhisensitive to segregation. Other data was
used with a material that was less prone to segjorgand found that the repeated measurement
error for that case was 0.5%. Thus the repeateabunement error for this new technique was
bound between 0.5% and 7.0%. Figure 10 indicdtasthere may be some spatial variation
effects in the error of the test. However, thisldoalso be due to the nature of the segregation
pattern. The data suggests that this spectrakgation test method using controlled filling
reproduces segregation patterns with reasonabileamc
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Figure 9.  Segregation variance due to repeated tests using spectral segregation
measurement
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Figure 10. Segregation variance due to repeated tests as a function of radial position
using spectral segregation measurement

It is also important that the calculation metho@diso compute the concentration profiles be
reliable. To test reliability, the mixture of tleresands was placed in the tester and the
concentration profile was measured for this santeepathree times (Figures 11 and 12). The
repeated solution of these concentration profilescates that based on three sigma deviation,
the measurement error for a material that was sengitive to segregation was 0.3%.
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Conclusions

The data presented suggest that the spectral metbscribed above measures segregation
potential reasonably well. The data further suggiest the measuring resolution of this new

methodology is limited to about 0.3%. The methadrmt resolve concentrations below 1%, but
should do a good job with concentrations 1% or tgreaRepeatability measurements from test
to test are comparable with other methods measprogerties of granular and powder systems
such as particle size and shape. This spectral adetifso compares well with independent

analytical methods of measuring segregation, suiggethat it can be successfully used to study
segregating materials. To date, nearly 350 systahaifferent materials have been examined

with this new technique using both visible and Mipectral methods.

The issue that has hampered past study of segrggatstems is a focus on bimodal systems.
The path forward is to expand segregation modetingnclude multi-modal materials. This
requires two things: a measurement technique thiatnseasure segregation of these complex
mixtures, and the development of theories to fiatdi and understand segregation of multi-
component material mixtures. Sometimes the meamnt leads the theory. Sometimes the
theory leads the measurement. One thing is certath the measurement and theory are
required to push the cause of scientific study &y It is hoped that this new technique can
provide much needed measurements on real syst€orsently, the limitation is a system of 6 or
fewer components. However, that limitation is lester design and not by theory. The
calculation for mixtures with more components cdmtddone using this method if the equipment
would allow it.

The new measurement method requires between 180aminutes for up to 50 measurements of
six components. Previously, this would have tadealytical labs a couple of weeks to measure.
The speed of this new method suggests that foromslan analyze several materials in a single
day and use that data to determine or optimize dtations to prevent segregation. The tester
has also been used to measure particle size ségrepased on a spectral method. However,
that will be a subject of another paper. Thereaapects of the technique that could be enhanced
or fine tuned to create a more precise instrumétdwever, the analysis of this new segregation
method suggests that it can be successfully usdsbgon a serious study of multi-component
segregating systems. The next step will be to hisedsults from this or similar test technique to
develop corresponding multi-component, multi-medstantheories describing segregation.
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